Flink读取Kafka写入Paimon

zjk 发布于 2023-12-27 321 次阅读


相关资源

Flink SQL

-- 1)注册 Paimon 源
CREATE CATALOG paimon_hive
WITH
  (
    'type' = 'paimon',
    'warehouse' = 'hdfs://xxxxx/paimon',
    'metastore' = 'hive',
    'hive-conf-dir' = '/xxxxx/conf',
    'uri' = 'thrift://域名1:9083,thrift://域名2:9083'
  );

-- 2)声明 Kafka 源
create table kafkaSource (
	`_timestamp` string,
	`name` string,
	`age` string,
	`id` string
) with (
	'connector' = 'kafka',
	'format' = 'json',
	'topic' = 'topic1234',
	'properties.bootstrap.servers' = '你的Kafka Brokers',
	'properties.group.id' = 'kafka-to-paimon',
	'scan.startup.mode' = 'latest-offset'
);

-- 3)读取+写入Paimon
INSERT INTO paimon_hive.paimon.odm_kafka_log
SELECT
	name AS `name`,
	age AS `age`,
	id AS `id`
	FROM_UNIXTIME(CAST(CAST(`_timestamp` AS BIGINT) / 1000 AS BIGINT), 'yyyyMMdd') AS `day`
FROM kafkaSource;

Flink Table (Java)

Maven依赖

<!-- 添加Flink依赖-->
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-streaming-java</artifactId>
	<version>1.15.0</version>
</dependency>
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-java</artifactId>
	<version>1.15.0</version>
</dependency>
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-connector-kafka</artifactId>
	<version>1.15.0</version>
</dependency>
<!-- flink table相关类 -->
<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-table-api-java-bridge</artifactId>
	<version>1.15.0</version>
</dependency>

<dependency>
	<groupId>org.apache.flink</groupId>
	<artifactId>flink-table-common</artifactId>
	<version>1.15.0</version>
</dependency>
<!-- 添加Paimon依赖-->
<dependency>
	<groupId>org.apache.paimon</groupId>
	<artifactId>paimon-flink-1.15</artifactId>
	<version>0.5.0-incubating</version>
</dependency>

Job类

package job;

import com.google.protobuf.ByteString;
import function.GalaxyToPaimonFlatMap;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.restartstrategy.RestartStrategies;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.DataTypes;
import org.apache.flink.table.api.Schema;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
import org.apache.flink.types.Row;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.Properties;

/**
 * @Author zhangjinke
 * @Create 2023/12/25 17:02
 * @Description 将银河PB格式日志写入到Paimon
 * @Wiki -
 * @Modifier -
 * @ModificationTime -
 * @Node -
 */

public class GalaxyToPaimonJob {
    private static final Logger LOG = LoggerFactory.getLogger(GalaxyToPaimonJob.class);
    private static final String GROUP_ID = "job.GalaxyToPaimonJob";

    public static void main(String[] args) {
        try {
            ParameterTool tool = ParameterTool.fromArgs(args);
            int source = tool.getInt("source");
            int flatmap = tool.getInt("flatmap");

            // Kafka consumer
			Properties galaxyPro = new Properties();
			properties.setProperty("bootstrap.servers", bootstrap_servers);
			properties.setProperty("group.id", groupId);
			// 自动检测topic分区变化时间间隔
			properties.put("flink.partition-discovery.interval-millis", "60000");
			properties.put("refresh.leader.backoff.ms", 6000);
	
            KafkaSource<ByteString> galaxyKafkaSource = KafkaSource.<ByteString>builder().setTopics(PropertyUtil.get("user_event_etl_topic")).setValueOnlyDeserializer(new ByteStringSchema()).setProperties(galaxyPro).setStartingOffsets(OffsetsInitializer.latest()).build();

            /** 1、 创建flink流式执行环境 */
            final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            env.enableCheckpointing(120000L, CheckpointingMode.EXACTLY_ONCE);
            env.getCheckpointConfig().setMinPauseBetweenCheckpoints(180000L);
            env.getCheckpointConfig().setExternalizedCheckpointCleanup(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
            env.getConfig().setAutoWatermarkInterval(0);
            env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(200, 60000 * 2L));
            env.setParallelism(32);
            /** 2、 添加 用户+事件 Source 源 */
            SingleOutputStreamOperator<Row> rsoso = env.fromSource(galaxyKafkaSource, WatermarkStrategy.noWatermarks(), "GalaxyToPaimonSource")
                    .uid("GalaxyToPaimonSource_Uid")
                    .name("GalaxyToPaimonSource_Name")
                    .setParallelism(source)
			/** 3、 简单取出字段,下发GalaxyEntity对象 */
					.flatMap(new GalaxyToPaimonFlatMap())
					.uid("GalaxyToPaimonFlatMapFunction_Uid")
					.name("GalaxyToPaimonFlatMapFunction_Name")
					.setParallelism(flatmap)
					.returns(Types.ROW_NAMED(
							new String[]{"realtime", "ip", "session_id", "app_id", "device_uuid""day", "hour"},
							Types.STRING, Types.STRING, Types.STRING, Types.STRING, Types.STRING, Types.STRING, Types.STRING));

            /** 4、创建flink table执行环境 */
            StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
            Schema schema = Schema.newBuilder()
                    .column("realtime", DataTypes.STRING())
                    .column("ip", DataTypes.STRING())
                    .column("session_id", DataTypes.STRING())
                    .column("app_id", DataTypes.STRING())
                    .column("device_uuid", DataTypes.STRING())
                    .column("day", DataTypes.STRING())
                    .column("hour", DataTypes.STRING())
                    .build();

            /** 5、创建 Paimon catalog */
            tableEnv.executeSql("CREATE CATALOG paimon_hive WITH ('type' = 'paimon', 'warehouse'='hdfs://xxxxx/paimon')");
            tableEnv.executeSql("USE CATALOG paimon_hive");

            /** 6、将流表注册为一个临时视图 */
            tableEnv.createTemporaryView("odm_event_realtime_view", rsoso, schema);

            /** 7、将数据插入到 Paimon 表中 */
            tableEnv.executeSql("INSERT INTO paimon.odm_event_realtime SELECT * FROM odm_event_realtime_view");
            env.execute("job.GalaxyToPaimonJob");
        } catch (Exception e) {
            LOG.error("GalaxyToPaimonJob启动失败!", e);
        }
    }
}

Function类

package function;

import com.google.protobuf.ByteString;
import org.apache.flink.api.common.functions.RichFlatMapFunction;
import org.apache.flink.types.Row;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

public class GalaxyToPaimonFlatMap extends RichFlatMapFunction<ByteString, Row> {
    private static final Logger log = LoggerFactory.getLogger(GalaxyToPaimonFlatMap.class);
    private static final DateTimeFormatter inputDateFormat = DateTimeFormatter.ofPattern("yyyy/MM/dd HH:mm:ss");
    private static final DateTimeFormatter outputDateFormat = DateTimeFormatter.ofPattern("yyyyMMdd");
    private static final DateTimeFormatter outputHourFormat = DateTimeFormatter.ofPattern("yyyyMMddHH");

    @Override
    public void flatMap(ByteString bytes, Collector<Row> out) {
        try {
            // 创建结果Row
            Row row = new Row(86);

            // 使用myProtoBufObj对象依次赋值
            myProtoBufObjDataToProtoBuf.myProtoBufObj myProtoBufObj = myProtoBufObjDataToProtoBuf.myProtoBufObj.parseFrom(bytes);
            String realtime = myProtoBufObj.getRealtime();
            row.setField(0, realtime);
            row.setField(1, myProtoBufObj.getIp());
            row.setField(2, myProtoBufObj.getSessionId());
            row.setField(3, myProtoBufObj.getAppId());
            row.setField(4, myProtoBufObj.getDeviceUuid());
            row.setField(5, LocalDateTime.parse(realtime, inputDateFormat).format(outputDateFormat));
            row.setField(6, LocalDateTime.parse(realtime, inputDateFormat).format(outputHourFormat));

            // 将 Row 对象输出
            out.collect(row);
        } catch (Exception e) {
            log.error("function.GalaxyToPaimonFlatMap error is:  ", e);
        }
    }
}